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Scattering operators on Fock space: V. The pseudoscalar 
mesons 
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Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA 

Received 26 January 1988, in final form 19 July 1988 

Abstract. The pseudoscalar mesons associated with SU(3)r,a,,u, are used to generate a 
many-particle Fock space. For the eight pseudoscalar mesons the algebra of operators 
commuting with SU(3)fl,,,,,, is shown to be isomorphic to an infinite-dimensional 
Lie algebra with a Cartan-Weyl structure discussed previously. When the Fock space is 
generated by quark-antiquark pairs, the algebra of operators commuting with SU(3),,,,,, 
becomes a direct sum of Aiu(') and a finite-dimensional Lie algebra. The relationship 
between elements of the algebra of commuting operators and multiparticle amplitudes is 
discussed and a model phase operator is chosen to compute some perturbative amplitudes. 

1. Introduction 

The pseudoscalar mesons can be used as basis elements in a representation space V 
of the internal symmetry group SU(3)fla,0,r. Since the pseudoscalar mesons are bosons, 
the appropriate many-particle space (all spacetime variables are suppressed) is the 
symmetric Fock space 9'( V), generated by the representation space V of SU(3)fl,,0,,. 
An internal symmetry scattering operator S is then a unitary operator on 9'( V), invariant 
with respect to SU(3)flavour. 

Let A\'"' denote the algebra of operators that commutes with the SU(3) action 
on 9'( V). If the scattering operator is written as S = eii, where 6, the phase operator, 
is Hermitian and a polynomial in elements of then S will automatically be 
unitary and invariant. 

The point of this paper is to investigate A\"", the algebra of operators commuting 
with SU(3), for several choices of V. In 9 2 we will choose V to be eight-dimensional 
representation space V"' of the eight pseudoscalar mesons. It will be shown that 
A:""' is isomorphic to the algebra AS0"' studied in Klink (1987, 1988, hereafter 
referred to as I1 and IV respectively). Such a result is quite surprising, since not only 
are the two Fock spaces different, but also the group actions on them are very different. 
Nevertheless, it will be shown that the number of raising and lowering operators in 

and AS0") are the same, as are the commutation relations of these operators. 
In 9 3 we choose V to be a nine-dimensional representation space, generated by 

quark-antiquark pairs, i.e. the nine pseudoscalar mesons are generated by the tensor 
product of the two three-dimensional quark-antiquark spaces. The Fock space 
9'( V'9') = 9'( V g  0 V")  will then have an algebra of operators commuting with 
SU(3) that is the direct sum of and a finite-dimensional Lie algebra, namely 
the oscillator algebra. 

Finally, using results from IV, we then investigate, in P 4, partial-wave amplitudes 
for a given phase operator $ and compute some simple multiparticle amplitudes. 
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4324 W H Klink 

2. The algebra 

The octet of pseudoscalar mesons consists of the pairs (K+, KO) and (I?’, K-), having 
isospin f and hypercharge 1 and -1, respectively, along with an isotriplet of pions 
(T+, T O ,  n-) and an isosinglet T O ,  with hypercharge 0. The SU(3) Lie algebra has a 
basis consisting of three pairs of raising and lowering operators, T,, U,, V,, along 
with two diagonal operators, T3,  the third component of isospin, and Y,  the hypercharge 
operator (we follow the notation of Gasiorowicz (1966)). The commutation relations 
of the SU(3) Lie algebra operators are given by Gasiorowicz (1966, p 262). All that 
is needed to generate the algebra are the matrix elements of the raising and 
lowering operators in the eight-dimensional representation of SU(3). They are also 
given by Gasiorowicz (1966, p 271) and can be written as 

1 K’ 
T Y  

2 

1.0 

- 
2 

1 

0 n -  

- 1  

The dotted lines give the matrix elements of the 7’. For example, U-vo= -(&/2)ffo 

The eight-dimensional representation space V‘” generates a many-particle Fock 
while V + n o  = ( l / A ) K + .  

space: 
5 

Y (  V‘8’) = 1 O [  v‘8’o.. .o v‘s’]:y, 
n =O 

where [ V‘”@. . .O V@)]zym is the n-fold symmetric tensor product of V@’ with itself. 
The octet of pseudoscalar mesons forms an orthonormal basis in V@’ and the basis 
elements are denoted by InT), IKo), . . . . A basis in the many-particle Fock space is 
then given by products of single-particle basis elements, suitably symmetrised. 

As discussed in IV, it is much more convenient to work with holomorphic Hilbert 
(or Bargmann) spaces than with Fock spaces. Since V(” is eight dimensional, Y (  V‘”) = 
HL;, the space of holomorphic functions in eight complex variables. The correspon- 
dence between single-particle basis elements in the two spaces is given by 

IK+) + Z K i  

Rather than writing zK+ for the complex variable corresponding to the state IK+), we 
will just write K+. Then operations like DK+(K+)3 will mean a / a z K + ( z K + ) 3 ,  etc. 

The action of SU(3) on elements in HL; is given by 

( T , f ) ( z )  = f (  D ‘ s ’ ( g - ’ ) z )  f €  HL;, g € SU(3). (3) 

D ‘ ” ( g )  is a matrix element of SU(3) with respect to the basis, equation (l), and 
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z = zK+, . . . , zK-. If g is infinitesimal D'*'(g) becomes the matrix elements given in 
the weight diagram, equation (1). From this it follows that any operator X in the Lie 
algebra of SU(3) acts on elements f in HL; as 

a (Xf)(z) = C;,zj-f(z). 
j J '  azj. (4) 

Here C;, is the matrix element of the operator X as given in equation (1 ) .  For example, 

As discussed in IV, to construct the algebra of operators that commutes with rg, 
equation (3), it is necessary to find those polynomials in HL; that are invariant with 
respect to rg, and from which all other invariant polynomials can be formed. This is 
most easily done by examining the tensor product decomposition of n-fold symmetric 
tensor products of V(8' for small values of N :  

n SU(3) irreps ( p ,  9) SU(8) irreps Dim. 
0 (0,O) (00..  . O )  1 
1 (1,1)  (10 . .  . O )  8 
2 (0,O) (1 ,1)  ( 2 , 2 )  ( 2 0 . .  . O )  36 ( 5 )  
3 (0,O) (1 ,1 )  ( 2 , 2 )  (30) (03) (33) (30 . .  . 0) 120 
4 (0,O) 2(1,1)  2(2,2)  (33) (40) (04) (44) (40 . . .  0 )  330 

2 ( p ,  q )  means the representation (p, q )  occurs twice. The (0,O) representation is the 
identity representation; the dimensions of the other representations are D( 1 , l )  = 8, 
D(2,2)  = 27, D(3,3)  = 64, D(4,4)  = 125, D(3,O) = D(0,3)  = 10 and D(4,O) = 
D(0,4)  = 35. From (5) we see that there will be invariant polynomials for n = 0 (which 
is trivial), n = 2,3,4, . . . ; they are written as P'~)(z), where ( m )  is the degree of the 
polynomial. p'"(z)  can be written as a linear combination of zlI . . . zI,,, with the linear 
combination chosen such that all the SU(3) Lie algebra operators, equation (4), 
annihilate the polynomial. The calculation for the invariant polynomials corresponding 
to n = 2 and 3 gives 

p'2'( Z) = 2 7 ~ + 7 ~ -  - ( 7 ~ ' ) ~  -  TO)^ + 2K'K- - 2KoRo 

P'~'( Z) = 3( 7~ ) 7 - 6r+c.ir-~/O - ( T / O ) ~  - 3 J 3 K + K - r 0  - 3J3KoK0ro (6) 0 2  0 

+ ~ K + K - T ~ - ~ K ~ K ~ T ~ + ~ & K ~ K - T + + ~ & K + K ~ T - .  
The fourth-order polynomial P'~'( z) is also readily calculated; it turns out that P'~'( z) = 
[~'"(z)]~, so it is not independent. 

Though the form of ~'~'(z) and ~'~'(z) is very different from the two invariant 
polynomials found in IV, it is striking that there are only two of them and they are of 
the same degree as those found in IV. This almost guarantees that the algebra A:U'3' 
is isomorphic to A:0'3', for all the other elements come from commutators formed 
from p'2'(z) and ~(~'(z). Note also that the representation structure in (5) is the same 
as that found in IV, equation (25). 

As in IV, raising operators are defined by 
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while the lowering operators are 

where p'"( D )  means replacing the arguments of the polynomial by their corresponding 
differential operator. 

Once these raising and lowering operators have been defined, new invariant 
operators can be generated by commutators. The most important one is 

6 Y' = [ Y-2, Y+3] 

Y+' = ( 2 d 7  O - &K'Ko) D,+ + ( 2 6  77' - &K-Ko)D,- 

+ ( 2 ~ ~ 7 '  - &K°Ko - &K+K-)D,O 

+[ ( , i r0 )2 - (70 )2 -KoKo+KfK--2~ i~ - ]D , ,~  

+ ( -K+ T O  + &K+ TO - &T+K') D ~ +  

+ (-K-T' + &K-T' - d 3 r - K ' ) ~ ~ -  
+ ( - K O ~ O  - & K O ~ O  + & - K + ) D ~ o  

+ (-K"O-&KO.rro+&'.rr+K-)DRo 

(9) 

which is a new invariant operator that is not a multiplication operator. 
To check that the operators Y'l, Y*' and Y*3 have the same commutation relations 

as the corresponding X'" operators of IV, the commutators [ Y*', Y*3] and [ Y+', Y-'1 
have been explicitly computed, using the concrete realisations of these operators given 
in equations (7)-(9). Since these computations are long and tedious, the work was 
actually done with the help of a symbolic manipulation program on a VAX computer. 
The result is that the commutation relations are the same as those found in IV, and 
hence the algebra is isomorphic to As0'3', even though the spaces HL; and HL; 
are different and the forms of the polynomial invariants are different. 

3. Quarks and the algebra 

The algebra of operators commuting with the SU(3) action depends on the representa- 
tion space of SU(3). In this section we will choose the representation space to be the 
nine-dimensional tensor product space of quarks and antiquarks. This nine- 
dimensional space is reducible under SU(3), so the Fock space can be written either 
as Y (  v Q ~  vQ) or Y (  ~'~'0 v"'). 

To emphasise the role played by the quarks and antiquarks, the corresponding 
holomorphic Hilbert space is written HL:x3, with z a 3 x 3  complex matrix whose 
entries correspond to the nine possible quark-antiquark combinations. The action of 
SU(3) on HL:,, is given by 

(r,f) (2) = f (  8 + zg 1 g E SU(31,fE G X 3  (10) 

where g+ is the adjoint of g .  Since 3 0 5 = 1 0 8, the various quark-antiquark pairs can 
be written in terms of the eight pseudoscalar mesons and a ninth meson, the 7'. The 
transformations between 3 05 and the eight pseudoscalar mesons are given in 
Gasiorowicz (1966, p 291), while 7' is given by z,,, = Tr z. 
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From the action of SU(3) on H J ~ : , ~ ,  equation (lo),  it is clear that all the polynomial 
invariants are of the form 

p ' " ( z )  = Tr zm.  (11) 

If Tr z = 0, then the two independent invariants are p ' * ' ( z )  = Tr z 2  and p O ' ( z )  = Tr z 3 ,  
which correspond to the two independent invariants of 

However, in this section we are interested in finding the algebra of operators 
commuting with SU(3) on the Fock space generated by quark-antiquark pairs and 
this means that Tr z is not zero. There is a new first-degree invariant p'"( z )  = Tr z and 
this will generate a new raising and lowering operator, defined by 

equation (6). 

( p + 1 f ) ( 4  = (Tr z)f(z) 

( W ) ( Z )  = (Tr D ) f ( z )  (12) 

There is also a number operator associated with v', namely 6,. = Tr z[d/a(Tr z ) ] .  The 
commutation relations for these new operators are 

which are the commutation relations of the harmonic oscillator algebra denoted by 0 
(Streater 1967). 

Because the 7' forms a one-dimensional space, the algebra of operators that 
commutes with the SU(3) action on the Fock space generated by quark-antiquark 
pairs is the direct sum of and 0. The towers of particles are arranged in the 
following way: 

n Particles and dimension SU(9)  irrep Dim. 
0 (00..  . O )  1 
1 M ( 8 )  ~ ' ( 1 )  (10 . . .  0) 9 
2 M M ( 3 6 )  M 7 ' ( 8 )  ~ ' t ) ' ( l )  (20. .  . O )  45 (14) 

4 M4(330)  M37'(120) M 2 ( 7 ' ) ' ( 3 6 )  Mvf3(8) ( ~ ' ) ~ ( l )  ( 4 0 . .  .O) 49 5 
3 M3(120)  M 2 7 ' ( 3 6 )  M 7 ' 7 ' ( 8 )  ( ~ ' ) ~ ( l )  ( 3 0 . .  . 0 )  165 

where M means the octet of pseudoscalar mesons, the dimensions of the various 
products are given in parentheses and the dimensions for powers of M are taken from 
the table, equation (5). 

As in § 2 any polynomial in A:u'3'O0 can now be used to construct a unitary 
invariant scattering operator. Transitions between the eight pseudoscalar mesons and 
7' will only occur, however, if the phase operator contains a product of operators 
from and 0. 

More generally, if there are two spaces VI and V,, the Fock space Y (  VI@ VJ = 
Y (  VI)@( V,) will have invariant polynomials arising from (VI  0. . .@ VI)&,, (call these 
p ! " ' ( z ) )  and (V,@.. .@ V,)&,, (call these p:" ' ( z ) ) ,  which generate algebras A:, and 
A!2 as discussed in IV. If there are also invariant polynomials coming from tensor 
products of the form ( V I @ .  . .@ VI):,!,@( V,O.. .@ VJ;;, (call these p ! y ' ( z ) ) ,  then 
the algebra AbI,,, will not be just the direct sum of A:, and A:2, but will have A?, 
and At2  as subalgebras, along with new operators generated from pi:'( z )  that produce 
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transitions between many-particle states from VI and V,. In the example given in this 
section, namely VI = V") and VI' = ' T ~ ,  no mixing was possible because new invariants 
p i y ) (  z )  cannot arise from a one-dimensional space. 

4. The algebra of commuting operators and scattering amplitudes 

To get the connection between the algebra of commuting operators and amplitudes of 
the 'scattering' operator, a representation space V of the internal symmetry group K 
must be given. V has a basis t?,, i = 1,. . . , N, of fundamental particles; particles are 
called fundamental if they are stable under the strong interactions. Note that, under 
this definition, the vector mesons are not fundamental since they decay strongly into 
other particles. In this paper we are considering only bosons, so if there are several 
species of fundamental particles, the relevant Fock space is 9'( VI) 0 9'( V,) 0. . . . = 

If the Lie algebra of operators commuting with the internal symmetry group on 
Y( VI@ V 2 0 . .  .), A?, V =  V,O V 2 0 .  . . , is known, its elements can be used to form 
the Hermitizn phase operator f ;  then a unitary invariant scattering operator is eli. 
The goal of this section is to see how to compute amplitudes for a given 4, i.e. matrix 
elements of the form 

9'( VI 0 v,0. . .). 

(%, * ,  nivlsln:, . , n;V) 

the magnitude squared of which gives the probability for a transition occurring from 
an initial state in which there are n: particles of type i, i = 1,. . . , N, to a final state 
where there are n, particles of type i. 

discussed in 0 2, N = 8 for the eight pseudoscalar mesons, 
which are the fundamental particles, and for a given f ,  the matrix elements of interest 
are transitions between many-particle states of pseudoscalar mesons. 

Since f is Hermitian, it can be diagonalised. We will write the eigenvectors as 
l(,y)x, A ) ,  where (x) is the irreducible representation label for the compact internal 
symmetry group K, x is a basis label in the representation space (x) and A labels the 
eigenvector in the representation of Ab. Then 

For the algebra 

7;I(x)xA) = A(x)I(x)x, A). 
Define partial-wave states as states of the form I ( x ) x n ~ ) ,  where n is the eigenvalue 

of the total number operator, and 77 denotes any other labels arising from A: needed 
to uniquely label a state. Then partial-wave amplitudes can be written as 

((x)xnslSl(x)xn'a? = c ((X)xn771(X)x~)e'A'"'((X)x~ l (x)xnr77')  (15) 
A 

where for simplicity we have assumed that the spectrum of 6 is discrete. Thus, if the 
spectrum and the matrix elements of the eigenvectors with respect to partial-wave 
states of f are known, the partial-wave amplitudes can be computed. Amplitudes are 
obtained via Clebsch-Gordan coefficients for many-particle states (n,, . . . , n , l ( ~ ) x n ~ ) ,  
discussed in IV. . 

It is, in general, difficult to find the eigenvectors and eigenvalues for a given 4. If, 
however, f is an element of A:, then partial-wave scattering amplitudes become matrix 
elements of the group associated with A?, i.e. 

((x )xn77 I SI (x ) x n  ' rl? = a&!,'&) (16) 
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where g is an element of the group associated with Ab. This was the point of view 
taken in 11, where Ab was a finite-dimensional Lie algebra, and the matrix elements 
are those of the associated group. 

But Ab is, in general, an infinite-dimensional Lie algebra. This means, on the one 
hand, that the possible choices for $ E Ab are much richer than with a finite-dimensional 
Lie algebra. On the other hand, work is only beginning on the groups associated with 
infinite-dimensional Lie algebras, such as Kac-Moody algebras (see, for example, Kac 
1983); in particular, it is not at all clear what sort of groups are associated with Ab. 

It is very easy to calculate perturbative amplitudes once $ is given. Choose, for 
example, $ = a (  Yt'+ Y- ' ) ,  (Y real, so that S = exp[ia( Y + ' +  Y-')I,  and write 

. *  1 
elv =C - (i)"($)" 

n !  

keeping only the first-order terms; then a typical production reaction matrix element is 

ia - - -- 
& 

where use has been made of equation (9); it is clear that such calculations can easily 
be extended to higher-order terms. 

However, a goal of this series of papers is to find non-perturbative methods for 
calculating strong interaction matrix elements. One such possibility-to be explored 
in succeeding papers-is to investigate the matrix elements of unitary operators corre- 
sponding to group elements associated with the algebra Ab. However, it should be 
pointed out that, if the scattering operator can be written as S = U,, parameters will 
appear in the group element g which, when sufficiently small, justify a perturbation 
calculation. In the example given above, if the parameter (Y is viewed as a group 
parameter and is sufficiently small, then the perturbation calculation is a good approxi- 
mation. 

5. Conclusion 

One method for obtaining non-perturbative scattering amplitudes is to have the phase 
operator for a quantum system be an element of the Lie algebra of operators that 
commute with the symmetry operators on the given Hilbert space. Then the scattering 
operator can be written as the unitary representation operator of some group element 
of the group associated with the algebra of operators that commute with the symmetry 
operators; if the group action on the Hilbert space is known, scattering amplitudes 
will be the matrix elements of the group element which gives the scattering operator. 

Such ideas can be applied to internal symmetries. If K is a compact internal 
symmetry group and V is the representation space of a fundamental set of particles, 
then the relevant (many-particle) Hilbert space is the Fock space 9 ' (V) ,  and the 
symmetry action on 9'( V) is inherited from the internal symmetry group K. The dual 
algebra'of operators that commutes with K on Y ( V )  has been denoted by Ab and 
forms the analogue of the SL(2, R) algebra of the example given by Klink (1987). 
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What we have done in this paper is to compute A‘: when K = SU(3)fla,,,, and V 
is either the eight-dimensional representation space of SU(3), in which case 9’( V) is 
the Fock space for the eight pseudoscalar mesons, or V is the nine-dimensional space 
of quark-antiquark pairs, in which case 9’( V) is the Fock space for the nine pseudo- 
scalar mesons. For the eight pseudoscalar mesons the algebra A2U(3) turns out to be 
isomorphic to the algebra of operators analysed in IV, namely A;0‘3’, the algebra of 
operators commuting with the SO(3) action on the Fock space generated by the 
five-dimensional representation 1 = 2 of SO(3). Such a result is quite surprising, since 
the Fock spaces and the symmetry operators acting on these Fock spaces are very 
different. The fact that the two algebras are isomorphic means that their irreducible 
representation structure is the same. However, the underlying reason that the structure 
of the two algebras is the same is not at all clear. 

For the Fock space generated by the nine quark-antiquark pairs, the algebra of 
operators commuting with SU(3)fla,,,, is x 0, where 0 is the oscillator algebra 
(see equation (13 ) ) .  As discussed in 9 3, such a result provides the basis for a more 
general result, namely whenever the Fock space is generated by a direct sum VI@ V,, 
the algebra of operators A:,oV2 will not be the direct sum of A;, and A:* if there exist 
invariant polynomials that mix between these two algebras. 

A goal of this series of papers is to obtain scattering operators in a non-perturbative 
way. Thus, a next step is to explore the group structure of the algebra of operators 
that commute with the given symmetry operators. 
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